Friday 25 July 2014

Elytron New tiltrotor concept




A Elytron 2S (shown here in a proposed seven-seater version) is a tiltrotor aircraft that uses a Prandtl's box wing designImage Gallery (7 images)


Some people are never satisfied. You give them a plane, and they say it can’t hover. You give them a helicopter, and they say it can’t fly very high or fast. Looking to combine the advantages of both fixed-wing aircraft and helicopters, Elytron Aircraft LLC of Mountain View, California is developing the Elytron 2S, a small tiltrotor aircraft that uses a box wing configurationand is aimed at the civilian market.
Airplanes and helicopters do well in their respective aeronautical niches. Airplanes can fly high, fast, far, and carry heavy loads, while helicopters can hover, fly backwards, land and take off vertically, and maneuver in very tight spaces. The tricky thing is when jobs arise where requirements overlap; like an airplane that can land vertically, or a helicopter than can fly at high altitude.

Though there have been some aggressive development projects in recent years, such as the Bell V-280, the AugustaWestland Project Zero andAW609, the only operational manned, prop-driven aircraft that manages this sort of hybrid flight is the V-22 Osprey tiltrotor aircraft.

In service with the US Marine Corps and the air forces of the US, Japan and Israel, the military tiltrotor spent many years in controversial development and, to this day, no civilian version has taken off. This is unfortunate because early visions of tiltrotor aircraft saw them employed as air taxis, short haul transports, and in other civilian applications.

The Elytron 2S is a new take on tiltrotor configuration that incorporates an unconventional wing design to create a hybrid aircraft with greater performance – especially in the difficult transition between vertical and horizontal flight. One of a family of aircraft developed by the Elytron company over the past decade, the 2S is intended to combine the features of a helicopter and a fixed-wing aircraft, with the company seeing applications for emergency medical services, search and rescue, air taxis, and oil exploration.


Comparing the 2S to the Osprey, the most obvious difference is its wing configuration, known as Prandtl's box wing design. It looks exotic and futuristic, but it’s actually a variation on a wing concept that dates back to the earliest days of aviation when it was used by the pioneer flyer Louis Bleriot in 1906. It has also been used more recently by Lockheed Martin for one of its concept jets.

2S’s design uses two pairs of wings. One pair is set forward on the fuselage and is swept back. A second pair is set on top of the tail and swept forward. The tips of the fore and aft wings are linked by winglets, forming a skewed box. With this layout the forces are distributed through the box structure, making it stronger and lighter. It also provides a high aspect ratio for greater lift of about 15 percent over conventional wings.

This results in greater fuel efficiency and less weight. In addition, the box wing is more stable, has better glide ratios and is less prone to stalling. In all, this makes Prandtl's box wing very suitable for short take-off and landing craft. The stall factor is particularly important because it helps keep the 2S in the air during the vertical to horizontal flight transition.

So far, this is unusual, but not unprecedented. According to Elytron, the novel bit about the 2S is the extra pair of rotating wings mounted amidships, which contain the motors and props. The rotary wings, called "proprotors," are powered by two 90-degree gearboxes and are mounted on a single, centrally-mounted tilt wing that travels through 100 degrees and has four control surfaces.


Elytron says that this arrangement inside the box wing obviates interference with the proprotors’ thrust, while the winglets protect against rotor strikes. Because the proprotors can drop to the horizontal for forward flight, the blades don’t have the disadvantage of helicopter rotors where the retreating side of the rotors slows the craft and introduces unwanted torque. The design of the proprotors is much less complicated than a helicopter rotor with no need to angle or feather the rotors, so the linkages are simpler and their fewer parts are spread out through the wing.

According to Elytron, the result of all this is low drag at high speed in a craft that can fly two to three times the speed of an equivalent helicopter and, if the V-22 is an example, it will have a higher operating ceiling. It’s also safer because its glide ratio means that the rotors don’t need to autorotate during an emergency landing. If that doesn't work. Elytron says it will install a ballistic parachute.

The Elytron 2S is a two-seater technology demonstrator built using fast prototyping with carbon composite materials. The company says that it plans to install a 450 bhp turbocharged race engine in the 2S with the goal of conducting flight tests next year. If successful, the next phase will include building a seven-seater version for commercial use. In the meantime, the 2S is on display at the Oshkosh Airshow through August 3.

Source: Elytron

NASA's future towards the successors of Hubble and James Webb deep space telescopes




Artist's impression of the Hubble/James Webb successor, the ATLAST space telescope (Image: NASA)


NASA has assembled a team of scientists and engineers to lay the first tentative plans for a successor platform to the Hubble and James Webb telescopes. The project, currently in the study phase, is being assessed for the technological and financial requirements needed to create so advanced a deep space observation platform.

Currently Hubble is without question NASA's flagship deep space telescope, with each image it captures not only contributing to our scientific knowledge, but also representing a piece of art and inspiration that has captured the minds of a generation. However, NASA cannot simply sit on the laurels of Hubble and stagnate. Instead, the agency is striving to continue to advance our knowledge, and peer deeper into the cosmos.

In this vein, NASA is well on the way to building Hubble's immediate scientific successor, the James Webb Space Telescope. This next step in space exploration comes with a 21 ft (6.5 m) primary mirror, designed in segmented pieces to allow for easy launch. Once the mirror is unfurled, James Webb will represent the largest and most advanced spacefaring telescope ever created, with the ability to image distant objects in long-wavelength visible to mid-infrared bands by utilizing a suite of advanced equipment.



ATLAST will be developed with technologies created for the Hubble (seen here) and James Webb telescopes (Photo: NASA)

However, even though it has been under design and construction since 1995, the James Webb telescope is still not due to be launched until 2018. Therefore, with lead times stretching into decades, the agency must begin to consider the successor to the James Webb telescope long before the observatory has even been launched.
Looking to the future

NASA recently assembled a team of scientists and engineers, based at NASA’s Goddard Space Flight Center, to begin laying plans for its next, next generation flagship mission. Proposals for the tentatively-named Advanced Technology Large-Aperture Space Telescope (ATLAST) have actually been in the works since the year 2000, but with progress on the James Webb space telescope progressing smoothly, the agency is ready to start taking a more detailed approach.

While still in the study phase, the design of ATLAST will build on technology borrowed from Hubble and James Webb, with the overriding goal of designing the telescope as a Hubble-like long-term observatory. To be successful in this goal, the telescope would have to be extremely stable. The agency has suggested that it could ensure said stability by putting ATLAST into the same orbit as the James Webb telescope (set to orbit 1.5 million km/1 million miles from Earth).

ATLAST will also be equipped with state-of-the-art technology designed to limit the disruptive effects of the sun. This will either be in the form of acoronagraph or an occulting star shade. The size of the mirror itself will also be a stabilizing factor, especially when combined with novel fine-tuning techniques.

NASA is currently considering the possibility of using a 33 ft (10 m) glass or carbon fiber primary mirror, which would allow for 17 times the light-gathering capability of Hubble's 7.9 ft (2.9 m) mirror. With this mirror, ATLAST could give detailed views of galaxies over 10 million light-years away. The mirror will also be designed in a similar segmented approach to those being tested for the James Webb telescope, allowing it to fit within the fairings of the Delta-IV Heavy Launch Vehicle (pictured below) pegged to lift the gigantic telescope into its operational orbit.


NASA seeks to apply lessons learned from past missions to further improve the longevity of the ATLAST mission. For example, a manufacturing error which manifested itself soon after the launch of the Hubble telescope could have rendered the billion-dollar piece of equipment useless, leaving it unable to focus on its quarry. However, thanks to the design of Hubble, a rescue mission was able to replace the faulty component, thus restoring the powerful telescope's vision. To make a crisis such as that which affected the Hubble Space Telescope easier to handle in the future, ATLAST is to be designed with modularity in mind.

"One of the pertinent attributes about ATLAST is that it’s being designed to be modular and serviceable, following the Hubble Space Telescope model," states Julie Crooke, a lead member in the Goddard study on the future mission. "Serviceability has been one of the great paradigms in mission architecture that separates the Hubble Space Telescope from all of the other space missions to date."

Finally, ATLAST will have the potential to aide in the discovery of life in our galactic neighborhood, by detecting certain trace chemicals in the atmospheres of Earth-like planets.

As work progresses with the James Webb space telescope, NASA will continue to mature the concepts and designs behind its successor, with the ATLAST planned for launch sometime in the mid 2020s.

Source: NASA

Monday 14 July 2014

Future Aircraft


Future aircraft could come with advanced 3D printers for specialized drone production




According to BAE Systems researchers, military aircraft could be fitted with 3D printers to create different drone types depending on the mission objective.


Requests for backup might usually trigger a halt in a military operations, but two fast-moving technologies could one day combine to deliver much-needed reinforcements exactly where they're needed. Such is the vision of defense firm BAE Systems, which sees aircraft having advanced onboard 3D printers that are capable of producing UAVs for wide-ranging military purposes.

At the intersection of drones and 3D printing technologies, there have been some notable creations in recent times. Engineers from University of Southampton developed the world's first printed aircraft back in 2011, while more recently we've seen a minimalistic UAV that can be printed and laucnhed within 24 hours. As for airborne 3D printers, a foam-squirting quadcopter has highlighted the potential for robots to carry out important tasks in hard to reach or unsafe areas.

Scientists and engineers at BAE Systems anticipate such advances in both 3D printing and drone technologies that by 2040, military aircraft could be fitted with onboard 3D printers to produce different types of UAVs on-demand. Depending on the scenario, the printer might produce a multi-rotor copter for the rescue of civilians, or a wide-winged vehicle for prolonged surveillance. This would constitute a highly versatile task-force, with a primary aircraft deployed and then able to manufacture a fleet of smaller, purpose-built vehicles depending on the scenario.

The vision for the 3D printing aircraft forms part of larger predictions for future aircraft technologies unveiled by BAE Systems. Other forward-thinking concepts include something called The Transformer where three aircraft fly as one until a threat is detected or different tasks need to be performed, then they can split apart and fly off in different directions. A UAV that's able to to take out missile threats with a directed energy weapon and a jet that can repair damage while in the air have also been put forward.

"Of course we don’t know exactly what sorts of aircraft technologies will be used in 2040 with any certainty, but it’s great to be able to show the public some concepts that might be possible through projecting where today’s technology could get to," says Nick Colosimo, Futurist and Engineering Manager of BAE System's Research and Development team.

You can see the team's vision for the 3D-printing aircraft in the animation below.

Source: BAE Systems

Boeing's Next Generation 737 Space Bins


Boeing increases carry-on capacity with new Space Bins

Boeing's Space Bins will stow six bags, two more than the current pivot bins installed on ...
Boeing's Space Bins will stow six bags, two more than the current pivot bins installed on Next-Generation 737s (Photo: Boeing)


Seasoned travelers know the benefits of restricting luggage to carry-on, letting them smugly cruise past the suckers waiting at baggage claim at the end of a flight. But with the number of people going carry-on only, finding space in the overhead compartments can be a hassle. Boeing's new Space Bags overcome this problem, with each storing two more bags than the current bins.

To be offered as an optional feature on the new Next-Generation 737's and 737 MAX aircraft, the new Space Bags will stow six carry-on bags of the standard 9 x 14 x 22-in (23 x 36 x 56 cm) size. This will bring the bag-carrying capacity of aircraft including the 737-900ER and 737 MAX 9 up to 194, which is 62 more bags than the current pivot bins that were introduced in 2010 can handle.

Boeing says the new Space Bins are as easy to close as the pivot bins, but don't require an assist mechanism. They also feature a lower bin lip height to make them easier to load and increase visibility to the back of the bins.

The Space Bins can be retrofitted to existing Next-Generation 737s and will be introduced on new aircraft deliveries to Alaska Airlines when they become available from late 2015.

Source: Boeing

Thursday 3 July 2014

Future supersonic advanced concept by Lockheed Martin




The Lockheed Martin future supersonic advanced concept (Image: Lockheed Martin/NASA)

On October, 24 2003, the last Concorde jet went out of service. What began as a promise of supersonic travel for all, ended as a museum exhibit of a false dawn. However, that may be changing with companies such asAerion and Spike Aerospace looking to take business jets supersonic. At Aviation 2014, an annual event of the American Institute of Aeronautics and Astronautics, NASA presented examples of the space agency’s work on new technologies that could lead to a revival of civilian supersonic travel within the next 15 years.


When the realistic prospect of supersonic passenger travel first came up in the 1950s, it seemed like the logical progression in the field of civil aviation, which had already undergone the sort of growth that the digital field enjoys today. The idea of flying routinely from London to New York in three hours was seen as not only a great boost to the economy, but also a way of bringing the world closer together.

In the 1960s, the Americans, British, French, and Soviets were all keen on developing and putting into service passenger planes that could cruise at over Mach 1. It was a technological race that was regarded at the time as being as great a technological accomplishment as the Apollo Moon landings. There were visions of fleets of supersonic Concordes, Tupolevs, Boeings, and Lockheeds flying around the world wearing the liveries of the great airlines.


Unfortunately, the aviation annus horribilis of 1973 put paid to those dreams. The Soviet TU-144 “Concordski” crashed at the Paris Air Show, the first OPEC oil embargo threw the already borderline economics of supersonic flight into a cocked hat, and the US FAA put a ban on supersonic overland flights in US territory. The result was programs cancelled en masse, empty order books, and a sum total of 20 Concordes that flew with Air France and British Airways because their governments made them. They were beautiful, full of prestige and a brilliant accomplishment, but, on balance, a technology that was a couple of generations ahead of its time.

That seemed to be the end of any supersonic flights except for military aircraft, but aviation technology has come a long way in 40 years, and private firms and government agencies are taking a fresh look at civilian supersonic planes. In 1969, they may have been ahead of their time, but perhaps their time is now arriving.




Boeing's future supersonic advanced concept (Image: NASA/Boeing)


Building a Concorde Mark II is a lot more than just dusting off the old blueprints and updating them. If supersonic passenger service is to succeed, there are major hurdles to be overcome. The greatest of these is taming the sonic boom. These days, unless they spend a lot of time in the middle of the ocean or near military air bases, few people hear sonic booms very often, but they’re still a window-rattling problem as the air in front of the supersonic liner tries to get out of the way, only to form a shock wave on the nose of the aircraft.

"Lessening sonic booms – shock waves caused by an aircraft flying faster than the speed of sound – is the most significant hurdle to reintroducing commercial supersonic flight," says Peter Coen, head of the High Speed Project in NASA's Aeronautics Research Mission Directorate. "Other barriers include high altitude emissions, fuel efficiency and community noise around airports."

How to solve this is partly a matter of engineering, partly public attitudes, and partly updating FAA regulations that were pretty vague when they were written, so NASA and its partners are taking a three-pronged approach towards coming up with a solution.



According to NASA, the aerospace agency is currently developing the technologies that could be used in civilian supersonic craft by 2025. Since not all sonic booms are equal, one of NASA’s projects involves having members of the public at the Langley Research Center in Hampton, Virginia, listen to a variety of 140 sonic booms and polling their responses.

This study, and similar ones at the Armstrong Flight Research Center in Edwards Air Force Base, California, will help NASA with the second objective, which is sitting down with the FAA and the International Civil Aviation Organization to update the regulations on supersonic flight that have stood since the 1970s. NASA says that the loudness of sonic booms isn't defined, so NASA and its partners are working with the regulatory agencies on what an acceptable noise level might be.

On the engineering front, which takes up the lion’s share of the effort, NASA centers scattered across the United States in California, Ohio and Virginia are trying to understand the nature of sonic booms as well as coming up with aircraft designs that can minimize them.



At the Ames Research Center, wind tunnel tests are conducted to study how altering of the fuselage, wings, engines, engine nacelles, and other components can shape the sonic boom in a way that could lengthen it or spread it out, turning a thunderclap into a loud rumble. The best design so far involves a needle-like nose, a sleek fuselage and delta or highly-swept wing.

Examples of these can been seen in designs from major aircraft manufacturers that NASA is helping to test in its supersonic wind tunnel. One from Lockheed Martin looks a bit like a stretched Concorde with a third engine mounted on the wing, while the Boeing version is remarkable for having two engines set on top of the wings. According to NASA, engine mounting can be an important factor in moderating sonic booms. Mounting the engines above the wings, for example, can send the boom upwards, but this can affect performance.

These designs are undergoing wind tunnel tests at NASA with specially constructed models that reproduce the characteristics of the full-size vehicle at supersonic velocities. This allows scientists to measure the boom signatures at various distances while estimating engine performance, with this data then used to validate and tweak computer models.



Other tests focused on wind tunnel tests of air inlets and exhausts to study engine nacelles and flow configurations and rates at various speeds from subsonic to supersonic up to Mach 1.8, to learn more about how to integrate them into supersonic plane design without compromising performance.

"The purpose of our testing was to measure the impact of the nacelle configurations on the boom signatures," says Don Durston, a High Speed Project engineer at Ames Research Center. "Preliminary results showed that as expected, with Boeing's nacelles being on top of the wing, any small changes there had negligible effects on the boom, Lockheed’s model having the two of the nacelles under the wing, did show a measurable impact on boom; however, that effect was predicted, and could be accounted for in the design process Lockheed used."

"We've convinced ourselves that we have the design tools and we've validated the level we need to design to," added Coen. "We've reached a point where quiet, low-boom overland supersonic passenger service is achievable."

Source: NASA